| | | | Current Installations | | Percent R | eductions | | ost Parameters | | | | |--|-------------------------------|---|--|---|-----------|---|---|-----------------------|--|--|---| | Control Technology | Manufacturers | New/Retrofit/Both | 2-Stroke/4-Stroke/Both | Time to Install | NOx | PM | Eqpmt. & Install. | Operation &
Maint. | Pros | Cons | Comments/References/Notes | | Continuous Water | MAN B&W | | | | | | | | | | | | Injection (aka Water in
Fuel Injection) | M.A. Turbine/Engine
Design | Both | Both | ~10 working days | up to 30% | up to 25% | ~\$33K | ~\$530/year | Reduced fuel
consumption; can be
operated without
engine modifications;
compact size | | Optimum water/fuel ration is ~10% (fuel penalties start occurring above 25%); Cost/Benefit Study of Marine Engine NOx Emission Control Systems, Transport Canada, 2/2000; no current applications known, but was previously applied to a B.C. Ferries vessel | | | Wärtsilä-Sulzer | Both (Note: only support to customer for system specification, but no specific systems/manufacturer and no sales activity); developmental | Unknown; developmental | Rough estimations: Approx. 2 weeks for emulsion system only; additional time (1-2 weeks) for adapting fresh water generator; Note in case of retrofits: except time for installation additional time for certification by classif. societies may be necessary (any change of components, additional tubes, pumps has to be reported to the class) | | negative
influence
regarding
the carbon
fraction of | 2 stroke:
estimated costs
\$13/kW (for
emulsifying
system only);
plant for
increased water
production not
included
(depends on
specific vessel
type/application) | ? | | Emulsion stability; fuel injection system capacity; poor performance when not using emulsion; injection system cavitation risk | | | Direct Water Injection | MAN B&W | | | | | | | | | | | | | Wärtsilä-Sulzer | 2-strokes: both in 5 years; 4-strokes medium speed only now both new and retro | 4-stroke (~50 engines installed or on order) | Rough estimations: Approx. 3 weeks for DWI system only(depending on cyl.number); additional time (1-2 weeks) for adapting fresh water generator; Note in case of retrofits: except time for installation additional time for certification by classif. societies may be necessary (any change of components, additional tubes, pumps has to be reported to the class) | | no data yet | \$15-\$30/kW
new | \$1-\$3 USD/MWh | Significant NOx
reductions; consume
only water; water-
efficient | Methods using water for NOx reduction require high amounts of fresh water (60-70% of fuel amount estimated), which might not be available at low loads (produced by fresh water generators) or in coastal regions, where the sea water quality might not be good enough for fresh water generators; may cause corrosion in cooler running 2-speeds | Field tests planned 2003/2004 in order to investigate long term behaviour; serial version available 2006. Works same regardless of S content of fuel. But high-S fuels there is indication of corrosion, but not if operating on low S fuels. If 2-strokes operated longer times with low S fuels the cylinder lubrication may need to be adjusted (increased lubrication). | | | | | Current Installations | j Marille vesser E | | Reductions | | ost Parameters | ., ==== | | | |---|--|---|-----------------------------------|---|---|---|----------------------------------|--|--|--|--| | Control Technology | Manufacturers | New/Retrofit/Both | 2-Stroke/4-Stroke/Both | Time to Install | NOx | PM | Eqpmt. & Install. | Operation & Maint. | Pros | Cons | Comments/References/Notes | | Humid Air Motor | M.A. Turbine/Engine
Design | | | | | | | | | | | | | Seaworthy Systems | | | | | | | | | | | | | SEMT Pielstick | | 4-Stroke | | 70-80%
(depending
on load
conditions) | | | | No increase in smoke
or HC emissions;
humidification tower
can replace the engine
intercooler | | Offered as an option available for a number of 4-
stroke Pielstick engines | | | Wärtsilä-Sulzer: not
promoting this
technology. Prefer
CASS - see below. | | | | | | | | | Humidification of the scavenge air might not be suitable on 2-stroke engines (not tested yet), due to concerns regarding the scavenging process with humid air over the whole stroke of the cylinder liner and affecting the oil film. | | | Combustion Air Saturation
Systems (CASS) | Wärtsilä-Sulzer | Avail in 5 years for both
new and retro 4-stroke
(not available on 2-
stroke engines!) | | | 70% | | | | | High amounts of water needed; Humidification of the scavenge air might not be suitable on 2-stroke engines (not tested yet), due to concerns regarding the scavenging process with humid air over the whole stroke of the cylinder liner and affecting the oil film. | | | Emulsified Fuels | Lubrizol (PuriNOx); Elf
Aquitaine (Aquazole); A-
55, Inc., Petroleos de
Venezuela SA (PDVSA);
BIMIX Korea (RE-30 and
RE-50); Komatsu
(engine & emulsion
equip); MAN B&W,
Reson, Pielstick (FWE
equip) | Both | Both | None for emulsions;
unknown but
probably minimal for
FWE equipment | 15-50%
(emulsions
vs. on-board
FWE
systems) | 50-63% | \$0 - \$217K | \$0 - \$36K | Engine modifications
not always necessary,
except for on-board
fuel-water emulsion
systems; cost of
emulsions should be
similar to diesel; RE-30
claims higher fuel
efficiency | Possible increase in HC and CO2; limited shelf life for emulsified fuels; slightly reduced power output; fuel penalty up to 1.5%; not applicable for all engines due to power reduction | City of Houston Diesel Field Demonstration Project, Environment Canada; Cost/Benefit Study of Marine Engine NOx Emission Control Systems, Transport Canada (February 2000); New Technologies and Alternate Fuels, John J. McMullen Associates, Inc. (January 2002); http://www.bimixkorea.co.kr/eng/main.htm | | Cleaner Fuel - 1.5% sulfur
HFO | N/A (numerous) | Both | Both | Unknown for tanks & piping. | 0 | 18% (and
SOx 44%)
USEPA | \$50,000/cat 3
engine (USEPA) | Fuel 60% higher
(USEPA) | Significant PM/SOX reds; lower initial investment | High Cost of fuel, negligible NOx benefit | Already implemented in the Baltic region via IMO. Analysis of 1.5% sulfur fuel option in USEPA Cat 3 staff report. | | Cleaner Fuel - Biodiesel | Numerous suppliers; a
list of US suppliers
available at
www.biodiesel.org | Both | Both; harbor vessels only to date | None | 1% to 18% increase | 18% to
35%
decrease
(note: this
based on
testing of
medium
and high
speed
engines) | None | 15¢ to \$1.60 per
gallon above on-
road diesel
(depends on
blend and
wholesale vs.
retail) | No installation costs; can be blended with diesel distallate; no engine modifications needed if used as in 80%/20% diesel/biodiesel blend; produced from renewable resources and/or waste fats; adds lubricity in low-sulphur fuels. | Limited availability; increased operating costs; increased NOx | | | | | | Current Installations | | Percent Reductions | | Estimated Cost Parameters | | | | | |--|---|---|--|---|---|-------------------------------|---|------------------------------------|---|---|---| | Control Technology | Manufacturers | New/Retrofit/Both | 2-Stroke/4-Stroke/Both | Time to Install | NOx | PM | Eqpmt. & Install. | Operation &
Maint. | Pros | Cons | Comments/References/Notes | | Cleaner Fuel - CARB On-
Road Diesel | N/A (numerous) | Both | Both | Unknown for tanks
& piping/ 20-60 min
to switch fuels | ~16% | ~72% (and
99% SOx) | \$50,000/cat 3
engine (USEPA) | Fuel 2.5x cost of residual (USEPA) | Very significant
PM/SOx reductions;
low initial investment. | Very high cost of fuel; 20-60 min. to switch to distillate. | Could be implemented only in target areas to minimize cost impact | | Cleaner Fuel - IFO 180 | N/A (numerous) | Both | Both | Unknown | Small;
unknown | Unknown | \$50,000/cat 3
engine (USEPA) | Fuel ~5% higher
(www2.mgn.com) | Low initial investment;
similar to existing
residual fuel | Negligible NOx benefit, and unkown probably modest PM benefit | Reportedly utilized by cruise ships to meet
Alaskan opacity limits | | Cleaner Fuel -MGO | N/A (numerous) | Both | Both | unknown for tanks & piping/ 20-60 min to switch fuels | 10% | 63% (and
89% SOx)
USEPA | 50,000/cat 3
engine (USEPA) | fuel ~2x cost of residual | Low initial investment;
significant PM/SOx
reductions | Very high fuel cost; 20-60 min. to switch to distillate | Similar to CARB diesel option; could be implemented only in target areas; analysis of MGO in USEPA Cat 3 staff report | | Fuel Injection
Modifications | Wärtsilä Mini-Sac Fuel
Injectors | Both ? | Both? | Unknown | | 50% | See comments | | Also reduces THC by 70% | | Installed on new engines, can't separate costs for different fuel injection system; improves fuel economy at low-mid speed which helps to offset costs | | | Sulzer's RT-Flex Engine
w/Wärtsilä's WECS-9500
Electronic control | New | 2-stroke | Unknown | 20% | | See comments | | No visible smoke at
any speed; steady
operation at very low
running speeds | | Also controls exhaust valve actuation, allows for variable exhaust valve timing; NOx can be selectively reduced by 20% while in certain areas; installed on new engines, can't separate costs for different fuel injection system; improves fuel economy at low-mid speed which helps to offset costs | | | Wärtsilä Common Rail
for four stroke engines | New | 4-stroke | Unknown | | | See comments | | Steady operation at very low running speeds | | Installed on new engines, can't separate costs for different fuel injection system; improves fuel economy at low-mid speed which helps to offset costs | | | MAN B&W? Slide-type
fuel valve | Both? | 2-stroke | Unk | 10-25% | 50% | See comments | | Slide-type fuel valve
reduces THC and soot
emissions by
decreasing fuel
seepage | | Installed on new engines, can't separate costs for different fuel injection system; improves fuel economy at low-mid speed which helps to offset costs | | | Wärtsilä-Sulzer Low-
NOx Injection
Technology: high
compression ratio,
retarded injection timing,
late exhaust valve
closure, optimized fuel
injection (nozzle
specification) | a lot of time and money,
depending on engine
type and cyl.number) | All new engines, which have
been installed on vessels with
keellaying on or after
01.01.00 (Annex VI) | | 5-10%
beyond
Annex VI
NOx limits | | New injection
nozzle tips
(costs
depending on
cyl.number), in
few cases
(depending on
engine type)
also new
actuator cams,
pistons,
cyl.covers;
reconditioning
cylinder liners | | | Fuel penalty | Retrofits are quite time consuming, due to reconditioning of cylinder liner, readjustment of fuel pumps, cams, engine control system and installation of new components | | | High Pressure Fuel
Injectors (CBOI) | Both | Both | | 25-30% | 25-30% | Available | | Will work on large
ships and various fuels
improves fuel economy | | Improves fuel atomization - decreases NOX and PM and improves fuel economy. | | | | | Current Installations | , | Percent Reductions Estimated | | | stimated Cost Parameters | | | | |---|--|---|---|--|--|---|---|--|---|---|--| | Control Technology | Manufacturers | New/Retrofit/Both | 2-Stroke/4-Stroke/Both | Time to Install | NOx | РМ | Eqpmt. & Install. | Operation & Maint. | Pros | Cons | Comments/References/Notes | | Exhaust Gas Recirculation | Contractors | Retrofit | Both | 2-3 days | 15-20% | Slight increase | motalii. | Manu | Not expensive; easy to install | | PM must be removed/reduced before EGR. Works with regular marine diesel, but bunker fuel has very high sulfur and this may not work | | Injection Timing Retard | | Both ? | Both? | Unk | Decrease | Increase? | See comments | | Reduces NOx emissions | Increase fuel consumption and PM; decrease power | | | Electronic Engine
Management Systems | | Both | Both | | 25-30% | 25-30% | Available | | Will work on large
ships and various fuels
improves fuel economy | | This technology electronically controls air-fuel ratios. | | Cooling Air Charge | | Both | Both | | | | Available | | Will work on large
ships and various fuels
improves fuel economy | | Lean burn process; lowers combustion temperature; lowers Nox and PM; increases fuel economy. | | Selective Catalytic
Reduction | Ceramics GmbH & Co.
KG (SINOx SCR
System); Wärtsilä-
Sulzer; MAN B&W RJM
Corporation; and others | Both; retrofit-solutions
for 2-stroke engines are
more difficult than for 4-
stroke engines because
of the required minimum
temperature for the SCR
system to perform | Both | Depends on the
number of SCR
systems installed -
is normally done
during a planned
overhaul / repair of
the vessel | Typical NOx reductions for vessels are between 80% and 90%; SCR capability is >90%; no NOx reductions at <25% load | | Total costs
\$260K to
\$1.23M (\$30-
\$70 per kW,
depending on
the number of
SCR systems
installed and the
required NOx
reduction) | \$1.30/gal for
aqueous urea
(total costs/US
flag depending on
engine size \$24K-
\$144K); may need
routine cleaning;
replacing reactor
elements 5-15 yrs
depending on the
fuel used; | | 1% sulfur or distillate fuel;
sulfur in fuel is a concern for
compact SCR; additional | SCR system can be designed to fit into tight spaces which might restrict the reduction rate; to address the space issue, one manufacturer is developing a compact system which uses an oxidation catalyst upstream of the reactor; see EPA Draft Regulatory Support Document for C3 Marine Engines, 4/02 | | Diesel Oxidation Catalyst | Clean Air Systems,
Donaldson, Engelhard,
Johnson-Matthey, Nett
Technologies, Inc. | Both | Have not located any marine installations | Estimate 4 to 12 hours | No Impact | 15 to 30%
(reduces
the SOF
portion of
the PM) | \$150-\$500
installation, \$3-
\$15 per
horsepower | | Less expensive than
DPF techology;
reduces SOF
(formaldehydes,
acetaldehydes,
acrolien, 1,3 butadiene,
PAH); up to 90%
effective for HC and
CO emissions; no fuel
economy impact | a strong impact on PM reductions; high sulfur fuels | Cost Information from stationary engine estimates and from MECA found at www.nan.usace.army.mil/front/aqfinal.pdf; manufaturers from stationary engine list; technical info from www.osti.gov/hvt/deer2000/whitacpa.pdf; most of the info based on mobile or stationary applications | | Fuel Cells | Marine Fuel Cells, Inc
AQMD received PON
response; Need to
check Navy projects | New | | | App. 100% | App. 100% | \$3000-
\$5000/kW | | Near-zero emissions | to hydrogen | This proposal is for a barge that will provide hotelling electrical power to ships. Fuel cells will also provide barge propulsion power. Fuel cells are PEM type. | | Non-thermal Plasma | Litex, Delphi,
ECOZONE, PlasmaSol,
AEA Technology, HI-Z
Technology | Both | Unknown | Unknown | Up to 90% | ~30% | Unknown; still developmental | Unknown; still developmental | Simple concept;
excellent NOx
reduction potential | Still developmental; requires electrical power to be supplied to the unit | http://www.trucks.doe.gov/research/engine/ntp-
catalyst.html; DieselNet; WTA report | | NOx Adsorber | Engelhard, Cummins,
Johnson-Matthey | Not available at this time (proprietary) | Not available at this time (proprietary) | Not available at this time (proprietary) | Not
available at
this time
(proprietary) | N/A | Not available at
this time
(proprietary), bu
staff was told it
will be quite
expensive | Not available at
this time
t (proprietary) | An additional option in
the effort to reduce
emissions of criteria
pollutants from marine
vessels | Cost; not commercially available at this time, and information needed to properly evaluate the technology considered proprietary by technology developers | | # DRAFT - Do Not Cite or Quote Oceangoing Marine Vessel Emission Control Technology Matrix - October 30, 2002 | | | | Current Installations | | Percent Reductions | | | | | | | |--------------------|--|-------------------|---|------------------------|--|-----------|------------------------|-----------------------|--|---|---| | Control Technology | Manufacturers | New/Retrofit/Both | 2-Stroke/4-Stroke/Both | Time to Install | NOx | PM | Eqpmt. &
Install. | Operation &
Maint. | Pros | Cons | Comments/References/Notes | | | Airmeex, Catalytic Exh. Prod, Oberland Mangold, Paas Technologies, Inc., 3M Corp., AirCor Corp., Buck TSP, Cha Corporation, Clean Air Systems, Corning, Inc., DCL International, Inc., Donaldson Company, Inc., Doubletree Technologies, Engelhard Corp., Engine Control Systems, Johnson- Matthey, Miratech Corporation, Nett Technologies, Inc., Rypos-Bekaert | | Typically 4 stroke; unknown effectiveness on 2-stroke engines | Estimate 4 to 12 hours | Typically no impact on NOx; may impact the NO/NO2 ratio of total NOx | 70 to 90% | \$14 to \$30 per
hp | year | High PM reductions,
may provide passive,
or active (automated)
regeneration | Sulfur content in the fuel may impact the effectiveness of some passive (catalyzed) filters; passive regeneration dependent on exhaust temp duty cycle; high costs for retrofit; may have fuel penalty for certain types of actively regenerating systems (fuel burners, electric regeneration) | www.marad.dot.gov/NMREC/conferences%20& %20workshops/jan%2029-30%202002/dehart.pdf; Navy Pilot Retrofit Program includes Rypos Filter; cost estimates from MECA found at www.nan.usace.army.mil/front/aqfinal.pdf |